
456 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 4, APRIL 1986

ACKNOWLEDGMENT

The authors are thankful for the valuable discussions held with

Prof. Dr. David A. Rogers from North Dakota State University,

Fargo, ND.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[la]

REFERENCES

D. Marcuse, “Interdependence of waveguide and material dispersion.”

APDI. Opt., vol. 18, no. 7, pp. 2930-2932, Sept. 1979.

P- ‘S M. Fires and D. A-. ‘Rogers, “ Non-additivity of wavegmde and

material dispersion in single-mode step-index optical fibers: Exact anal-

ysls,” m Proc. URSI— Nat. Radio SCI. Meet., May 1982, pp. 22.

P. S. M Plres, D. A. Rogers, E. J. Bochove, and R. F. Souza, “Prediction

of laser wavelength for minimum total ihspersion m single-mode step-

index fibers,” IEEE Trans. MIcrowaue Theory Tech., vol. MTT-30, pp.

131-140, Feb. 1982.

C. T Chang, ‘<Minimum dispersion in single-mode step-index optical

fibers,” Appl. Opt., vol. 18, pp. 2516-2522. July 1979.
‘<Minimum dispersion at 1.55 pm for single-mode step-index

=’ Electron. Lett., vol. 15, no. 23, pp. 765-767, Nov. 1979.

C. R. South “Total dispersion in step-index monomode fibers.” E[ectron

fxvt., vol. 15, no. 13, pp. 394-395, June 1979.

P, S. M Pires, “Analysis of dispersion in single-mode step-index optlcaf

fibers without the use of asymptotic expressions,” M S.E.E thesis, State

Univ. of Campinas, Brazil, Aug. 1980, (in Portuguese)
M. Miyagi and S. Nishida, “An approximate formula for describing

dispersion properties of optical dielectric slab and fiber wavegmdes,” J.

Opt. Sot. Amer., vol 69, no. 2, pp. 291-293, Feb. 1979.

R. A, Sammut, “Analysis of approximation for the mode dispersion in

mcmomode fibers,” Electron Left., vol. 15, no. 19, pp. 590–591, Sept

1979.

P S, M Plres and D. A. Rogers, “Single-mode fiber design for minimum

dispersion,” IEEE Trans. MIcrowuue Theory Tech., vol. Ivf’rT-31, m. 11,
pp. 959-962, Nov. 1983.

M. Abramowitz and I A. Stegun, Handbook of Mathermmcal Functions,

US Dept. of Commerce, NB~, AMS-55, Dec.” 1972.

I W. Fleming, “Material dispersion in lightgmde glasses.”

Lett , vol. 14, xto. 11, pp 326-328, May 1978.

On the Measurement of Noise Parameters of

Microwave Two-Ports

MARIAN W. POSPIESZALSKI, SENIOR MEMBER, IEEE

.4struct — A novel procedure for determining the noise parameters of

microwave two-ports is introduced. In this procedure, the computations

necessary to find the noise parameters from the set of measurements of

noise temperature (noise figure) are greatly simplified. The assessment of

accuracy with which the noise parameters can he determined from a given

set of measurement data is straightforward.

I. INTRODUCTION

A typicaf noise parameter measurement setup is schematically

shown in Fig. 1. The noise parameters of a device under test

(DUT) and those of a receiver are represented by pairs of noise

sources having correlation matrices [1]–[5]
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Fig. 1. A typical noise parameter measurement setup.

respectively. These matrices have to be Hermitian and nonnega-

tive definite [3]–[5]. If the signaf parameters of a DUT are given

by chain matrix [AD], then the noise parameters of the cascade

connection of the DUT and receiver given in a form of correla-

tion matrix [C] are [5]

[C]=[CD] +[AD][CR][AD]t (3)

where the “dagger” designates the complex conjugate of the

transpose of [A ~ ] matrix. Matrix [C] represents the noise param-

eters that can be determined at plane T (Fig. 1) by at least four

noise temperature (noise figure) measurements for different val-

ues of source impedance as provided by the impedance trans-

forming network. It is clear that if the noise parameters of a DUT

are desired, the receiver contribution can be removed using (3),

provided receiver noise parameters and device signal parameters

are known.

The noise temperature ~, of any linear two-port is most

commonly written in the following form [1], [2]:

~, = Tm,n + N~
1-% - zopt12

R, Ropt

IK– VP,12
= Tm,n + NTO

G,Gopt

N = GHRopt = R,,Gopt

(4)

(5)

and

Tm,n minimum noise temperature,

&=290K standard temperature,

Z,= R,+ jX, source impedance,

~= G,+jB, source admittance,

%pt = R.pt + .LK.pt optimum source impedance,

I’&, = GC>Pt+ jBopt optimum source admittance,

R,, noise resistance,

G,, noise conductance.

T Ropt, Xopt, G,, and Tmin, Gopt, Bopt, Rn are. the sets ofmln *

noise parameters equivalent to the correlation matrix [C] (ap-

propriate relations are given, for instance, in [2]). It has been

shown that both T~i~ and the parameter N are invariant under

transformation through lossless reciprocal two-ports connected to

the input of a noisy two-port [2]. It also has been observed that

for ~m,~ and N to represent a physicaf two-port, the following

inequality has to be satisfied [6]:

Tm,n < 4NT0 , (6)

This inequality (together with rather obvious conditions:

Tmin >0, G,, >0 (or R ~ > O)) follows directly from the property

that the correlation matrices have to be Hermitian and nonnega-

tive definite. A simple physical interpretation of this inequality is
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that two noise sources may not be more than 100-percent corre-

lated.

In order to determine four noise parameters, it is now common

practice to make a measurement of noise temperature for a

number of different values of source impedance, greater than the

minimum number of four. Then the influence of random errors

may be reduced by a proper “fitting” procedure of a theoretical

curve to measurement points. A number of computational meth-

ods have been proposed for this purpose [6]–[9]. These proce-

dures seek the values of the noise parameters for which there is a

minimum of an error function defined on the sets of measured

values of noise temperature (or noise figure) and those predicted

from (1). The definition of an error function and the choice of a

set of noise parameters with respect to which this function is

minimized differs from reference to reference. This minimization,

however, has been performed with respect to all four noise

parameters, which are varied independently, ignoring inequality

(6). This occasionally results in the set of noise parameters that

do not satisfy (6) and therefore do not represent the noise of any

physical two-port [10].

The procedure proposed in this paper allows clear insight into

this problem. Also, the errors in noise parameters determined

from a given set of noise temperature measurements can be easily

assessed.

II. THEORY

It is evident from (4) that for any value of source resistance R,,,

the minimum in noise temperature T. occurs for the source

reactance X$ or susceptance BJ equal to the optimum source

reactance X&t or susceptance BOPt. With the proper design of

impedance transforming network, the condition for X, = XOPt can

be easily satisfied experimentally. In this case, (4) can be rewrit-

ten in the following form:

%=(=24+42+3‘7)
Choosing a new set of variables y = ~/~, x = R,/ROpt +

R.pt /’R. z Z (’) beCOIIIeS

where

The coefficients

y=a+bx (8)

T
U.-!!!2-2N

~

b=N. (9)

a and b are invariant under any lossless trans-

formation at the input; consequently, (7) does not depend on the

choice of the reference plane for the determination of source

resistance R,. This plane can be conveniently chosen for the

realization of a number of different values R,, (or G,, ) of source

resistance (or conductance) for which the corresponding values

~; of noise temperature are measured. Then the “fitting” al-

gorithm for a number of measurements n >3 can be reduced to
finding the ROP, (or GOP,) for which the measured values of noise

temperature ~~ for source resistances R,, (or conductance G,z)

give the best fit to the straight line. For any assumed value of

R .,,, the coefficients a and b of (8) can be found by linear
regression, fitting the measured data with the mean square error

of / .

(lo)

v i=l

where n is the number of measurement, Tfi~ and T~, are mea-

sured and computed noise temperatures for given values of
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Fig. 2. (a) Constrrrctlon of input Impedance transforming network (b)

Equivalent circmt at frequency at which the transformer is precisely quarter-

wave.

source resistance R,,. Clearly, the best estimation of Ropt (and,

therefore, N and Tmin) for a given set of measurement is for error

E assuming its minimum value.

III. MEASUREMENT EXAMPLE

Simplicity and the relative advantages of the proposed proce-

dure are demonstrated in the example of the noise measurement

at cryogenic temperatures of experimental HEMT’s developed at

Cornell University [11]. The construction of the input impedance

transforming network is shown schematically in Fig. 2(a) [12],

[13]. The quarter-wave transformers are realized as movable slugs

on a SO-Q transmission line. The transistor gate lead, covered

with teflon tubing placed inside the inner conductor of the 50-Q

line, forms a series stub of a reactance varying much more rapidly

with frequency than the real part of source impedance or the

noise parameters of a transistor. This assures that the minimum

of measured noise temperature versus frequency occurs at a

frequency at which X, = XOP,. The position of the transformer

can then be easily adjusted so the minimum of noise temperature

versus frequency coincides with the intended frequency of mea-

surement at which the transformer is precisely quarter-wave.

In this case, the equivalent circuit shown in Fig. 2(b) is valid
and at plane T~: X~~ = X~,_Pt= O. If the graphicaf representation

of noise parameters [14] at plane TT is employed, the centers of

the constant noise temperature (noise figure) circles lie on the

real axis. Measuring Tn for number of transformers of different

characteristic impedance positioned in the same plane yields the

remaining noise parameters T~m,n, NTY RTopt

Any element of the equivalent circuit of the impedance trans-

forming network that is not precisely known but is the same for

all transformers can be treated as part of the two-port [A~ ], and

therefore does not contribute any systematic errors to the de-

termination of noise parameters at plane TT.

Determination of the noise parameters at plane T is most

simply done by using the relation

[c]=[’4E]-’{[cT] -[cE]}[AE]-’f (11)

where the chain matrix [AE ] and correlation matrix [ C~ ] are of

the passive, reciprocal two-port between planes TT and T as

indicated in’ Fig. 2. Equation (11) follows immediately from (3)

rewritten for the circuit of Fig. 2. Of course, if this two-port is

lossless, [CJ = O. In the presence of losses, [C~] can be easily

determined from [A~] [15]. Formulas (3) and (11), as well as

those for other interconnections of two-ports, and also conver-

sions between different sets of noise parameters, lend themselves

to computer implementation [16], [17].
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Fig. 3. Example of measured data (crosses) at 8.4-GHz frequency, corrected

for receiver contribution, for cryogenically cooled (12.5 K) Cornell HEMT at

reference uhme T~ comtxired with minimum mean- sauzwe error E fit (solid

line) resufiing in ~oise parameters T~min, R ~oPt, G~..
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Fig. 4. Analysis of error in determination of noise parameters for the experi-

mental data of Fig. 3. “Allowed” and “forbidden” regions for the set of noise

parameters TTmin, NT, G~ti are indicated.

I r I I , I

1 “FORBIOOEN” : “AL!OYO”
s16 8E

REGION
4

4

‘l-:’’’’-:’:+
12 6+–+–+–+-+–+–+– +-+-+-+_<+_+_+_+_+_+ ~

, i I
3 4 5 6 7

RTON(Q)

Fig. 5. Analysis of error in determination of noise parameters for the data of

Fig. 3 altered in the following way: ~11(1 ,7) = 15,3 K, T., (50) = 32.3 K. These

alterations caused the minimum of E to occur in the “forbidden” region. The

noise parameters for E assuming its minimum value do not satisfy the

fundamental inequality (6).

An example of measured data for a cryogenically-cooled Cornell

HEMT [11], [12], and its noise parameters determined at plane T~

by the described procedure and corrected for the receiver contri-

butions are given in Fig. 3 (details of the measurement setup are

given in [13]). The error analysis of this data is presented in

Fig, 4.

The “allowed” and “forbidden” regions for noise parameters

are indicated. It is clear that relatively small measurement errors

may force the minimum of error function E into the “forbidden”

region. It is demonstrated in Fig. 5, where first and last measure-

ment results were altered to show how a minimum of E may

occur in the “forbidden” region. This example demonstrates how

easily, for a given set of measurements, the measurement error

may lead to violations of fundamental inequality (6).

This is especially the case for very low-noise HEMT’s or FET’s

in which the equivalent noise sources in drain and gate circuits

are very closely correlated. If, therefore, in the course of measure-

ment, only two from the noise parameters TmiD, N, ROpt can be

dealt with accurately, then the inequality (6) provides a bound on

the remaining parameter.

The accuracy with which the noise parameters at plane T can

be determined from those at plan T~ is only dependent on the

accuracy with which the signal parameters of two-port T~ – T,

given for instance by [A ~ ], are known. In most practical situa-

tions, this network can be considered lossless, which preserves the

values of Tmln and N. This, therefore, may cause the errors only

in the values of ROPt and XOPt.

IV. CONCLUSIONS

The novel measurement procedure of the noise parameters of

microwave two-ports has been presented. Not only are the com-

putations simplified but, at different steps of the proposed proce-

dure, the effect of measurement errors on the values of different

noise parameters can be easily analyzed.

ACKNOWLEDGMENT

The many helpful discussions held with Drs. S. Weinreb and

J. Granlund of NRAO during the course of this work are greatly

appreciated.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[x]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

IRE Subcommittee 7,9 on Noise: “ Representation of noise in linear

two-ports,” Proc. IEEE, vol. 48, pp. 69-74, Jan. 1960.

J. Lange, “Noise characterization of linear two-ports in terms of in-

variant parameters,” IEEE J. Solid-State Circuits, vol. SC-2, pp. 37-40,

June 1967.

H. Rothe and W. Dahlke, “Theory of noisy four poles,” Proc. IRE, vol.

44, pp. 811-818, June 1956.

H. Haus and R. B. Adler, “Optimum noise performance of linear

amplifiers,” Proc. IRE, vol. 46, pp. 1517-1533, Aug. 1958.

H. Hillbrand and P. Russer, “An efficient method for computer-aided

noise analysis of linear amplifier networks,” IEEE Trans. Circuits Syst.,

vol. CAS-23, pp. 235–238, Apr. 1976.

W. Wiatr, “A method of estimating noise parameters of linear microwave

two-ports,” Ph.D. dissertation, Warsaw Tech. Univ., Warsaw, Poland,

1980 (in Polish).

R. Q. Lane, “The determination of the device noise parameters,” Proc.

IEEE, vol. 116, pp. 1461-1462, Aug. 1969.

G. Caruso and M. Sannino, “Computer-aided determination of micro-

wave two-port noise parameters,” IEEE Trans. Microwave Theory Tech.,

vol. MTT-26, pp. 639–642, Sept. 1978,

M. Mitama and H. Katoh, “An improved computational method for

noise parameter measurement,” IEEE Trans. Microwave Theoy Tech.,

vol. MTT-27, pp. 612–615, June 1979.

M. W. Pospieszalski and W. Wiatr, “Comment on design of microwave

GaAs MESFET’S for broad-band, low-noise amplifier,” IEEE Trans.

Micrmwcme Theory Tech., vol. MTT-34, p. 194, Jan. 1986.

L. H. Camnitz, P, A. M&i, P, J. Tasker, and L. F. Eastman, “Submi-

crometer, quantum well HEMT with an AI,3 Ga., As,” in Proc. 1984 Int.

SVmp. GuAs Related Campoum/s (Biarritz, France) Sept. 1984, to be

published in Inst. Phys. Carlf. Series.

S. Weinreb and M. Pospieszalski, “ X-band noise parameters of HEMT

devices at 300 K and 12,5 K,” in Proc. 1985 Int. Micrawuve Symp.

(St. Louis, MO), June 1985; pp. 539-542.

M. Pospieszalski, “Low-noise, cryogenically cooled, 8.0– 8,8-GH2 ampli-

fiers,”’ National Radio Astronomy Observato~ Electronics Div. Internal

Rep. no. 254, Dec. 1984.

H. Fukui, “Available power gain, noise figure, and noise measure of

two-ports and their graphicaJ representations,” IEEE Trans. Circuit

Thea~v, vol. CT-13, pp. 137-142, 1966,

R. Q. Twiss, “ Nyquist’s rmd Thevenin’s theorems generalized for nonre-

ciprocal linear networks,” J. App/. Phys., vol. 26, no. 5, pp. 599-602,

May 1955.

D. L. Fenstermacher, “A computer-aided amdysis routine including

optimization for microwave circuits and their noise,” National Radio

Astronomy Observatory Electronics Div. Internal Rep. no. 217, July

1981,

J. Granlund, “ FARANT on the HP9816 computer,” National Radio

Astronomy Observatory Electronics Div. Internal Rep. no. 250, Aug.

1984.


