456

ACKNOWLEDGMENT

The authors are thankful for the valuable discussions held with
Prof. Dr. David A. Rogers from North Dakota State University,
Fargo, ND.

REFERENCES

[1] D. Marcuse, “Interdependence of waveguide and material dispersion,”
Appl. Opt., vol. 18, no. 7, pp. 2930-2932, Sept. 1979.

[21 P S M. Pires and D. A. Rogers, “Non-additivity of wavegmde and
material dispersion in single-mode step-index optical fibers: Exact anal-
ysis,” in Proc. URSI-— Nat. Radio Sci. Meet., May 1982, pp. 22.

[3] P.S.M Pires, D. A. Rogers, E. J. Bochove, and R. F. Souza, “Prediction
of laser wavelength for minimum total dispersion 1 single-mode step-
index fibers,” TEEE Trans. Microwave Theory Tech., vol. MTT-30, pp.
131-140, Feb. 1982.

[4] C. T Chang, “Minimum dispersion in single-mode step-index optical
fibers,” Appl. Opt., vol. 18, pp. 2516-2522, July 1979.

, “Minimum dispersion at 1.55 pm for single-mode step-index
fibers,” Electron. Lett., vol. 15, no. 23, pp. 765-767, Nov. 1979.

[6] C.R. South “Total dispersion in step-index monomode fibers,” Electron
Lett., vol. 15, no. 13, pp. 394-395, June 1979.

[71 P.S. M Pires, “Analysis of dispersion in single-mode step-index optical
fibers without the use of asymptotic expressions,” M S EE thesis, State
Univ. of Campinas, Brazil, Aug. 1980, (in Portuguese)

[8] M. Miyagi and S. Nishida, “An approximate formula for describing
dispersion properties of optical dielectric slab and fiber waveguides,” J.
Opt. Soc. Amer., vol 69, no. 2, pp. 291-293, Feb. 1979.

[9] R. A. Sammut, “Analysis of approximation for the mode dispersion in

monomode fibers,” Electron Lett., vol. 15, no. 19, pp. 590-591, Sept

1979.

P S. M Pures and D. A. Rogers, “Single-mode fiber design for minimum

dispersion,” TEEE Trans. Microwave Theory Tech., vol. MTT-31, no. 11,

pp- 959962, Nov. 1983.

M. Abramowitz and I A. Stegun, Handbook of Mathematical Functions,

U.S Dept. of Commerce, NBS, AMS-55, Dec. 1972.

I W. Fleming, “Material dispersion in lightgwde glasses.” Electron.

Leti . vol. 14, no. 11, pp 326--328, May 1978.

(10}

On the Measurement of Noise Parameters of
Microwave Two-Ports

MARIAN W. POSPIESZALSKI, SENIOR MEMBER, IEEE

Abstract — A novel procedure for determining the noise parameters of
microwave two-ports is introduced. In this procedure, the computations
necessary to find the noise parameters from the set of measurements of
noise temperature (noise figure) are greatly simplified. The assessment of
accuracy with which the noise parameters can be determined from a given
set of measurement data is straightforward.

I. INTRODUCTION

A typical noise parameter measurement setup is schematically
shown in Fig. 1. The noise parameters of a device under test
(DUT) and those of a receiver are represented by pairs of noise
sources having correlation matrices [1]-[5]
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Fig. 1. A typical noise parameter measurement setup.

respectively. These matrices have to be Hermitian and nonnega-
tive definite [3]-[5]. If the signal parameters of a DUT are given
by chain matrix [A], then the noise parameters of the cascade
connection of the DUT and receiver given in a form of correla-
tion matrix [C] are [5]

[C1 =[]+ ][ CrI[ 4] (3)
where the “dagger” designates the complex conjugate of the
transpose of [ A, ] matrix. Matrix [C] represents the noise param-
eters that can be determined at plane T (Fig. 1) by at least four
noise temperature (noise figure) measurements for different val-
ues of source impedance as provided by the impedance trans-
forming network. It is clear that if the noise parameters of a DUT
are desired, the receiver contribution can be removed using (3),
provided receiver noise parameters and device signal parameters
are known.

The noise temperature 7, of any linear two-port is most
commonly written in the following form [1], [2]:

|1 Z, ~ Z..|*
Ty = Ty + VT, o0
Rs Ropt
Y, - ¥, tlz
=T+ NTy— " (4
" GsGopl
where
N = Gn Ropt = RnGopt (5)
and
T minimum noise temperature,
T,=290K standard temperature,
Z,=R,+ jX, source impedance,
Y, =G, + jB, source admittance,
Zopy = Rop + JXop optimum source impedance,
Yoo = Gopy + By optimum source admittance,
R, noise resistance,
G, noise conductance.
Tons Rops Xopes G, and Ty, G, B, R, are the sets of

noise parameters equivalent to the correlation matrix [C] (ap-
propriate relations are given, for instance, in [2]). It has been
shown that both 7, ;, and the parameter N are invariant under
transformation through lossless reciprocal two-ports connected to
the input of a noisy two-port [2]. It also has been observed that
for T, and N to represent a physical two-port, the following
inequality has to be satisfied [6]:

T,

mmn

<4NT,.

(6)

This inequality (together with rather obvious conditions:
Tin=>0,G, >0 (or R, >0)) follows directly from the property
that the correlation matrices have to be Hermitian and nonnega-
tive definite. A simple physical interpretation of this inequality is
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that two noise sources may not be more than 100-percent corre-
lated.

In order to determine four noise parameters, it is now common
practice to make a measurement of noise temperature for a
number of different vatues of source impedance, greater than the
minimum number of four. Then the influence of random errors
may be reduced by a proper “fitting” procedure of a theoretical
curve to measurement points. A number of computational meth-
ods have been proposed for this purpose [6]-[9]. These proce-
dures seek the values of the noise parameters for which there is a
minimum of an error function defined on the sets of measured
values of noise temperature (or noise figure) and those predicted
from (1). The definition of an error function and the choice of a
set of noise parameters with respect to which this function is
minimized differs from reference to reference. This minimization,
however, has been performed with respect to all four noise
parameters, which are varied independently, ignoring inequality
(6). This occasionally results in the set of noise parameters that
do not satisfy (6) and therefore do not represent the noise of any
physical two-port [10].

The procedure proposed in this paper allows clear insight into
this problem. Also, the errors in noise parameters determined
from a given set of noise temperature measurements can be easily
assessed.

II. THEORY

It is evident from (4) that for any value of source resistance R,
the minimum in noise temperature 7, occurs for the source
reactance X, or susceptance B, equal to the optimum source
reactance X o Or susceptance B . With the proper design of
impedance transformmg network, the condition for X, = X, can
be easily satisfied experimentally. In this case, (4) can be rewrit-
ten in the following form:

2=(h—2N)+N( R +&).
T, \ T Ry R

opt s

@)

Choosing a new set of variables y=T,/T;, x=R /R, +

R /R, > 2, (7) becomes
y=a+bx (8)
where
T,
a=-—=-2N
Ty
b=N. 9)

The coefficients a and b are invariant under any lossless trans-
formation at the input; consequently, (7) does not depend on the
choice of the reference plane for the determination of source
resistance R,. This plane can be conveniently chosen for the
realization of a number of different values R, (or G,,) of source
resistance (or conductance) for which the corresponding values
T of noise temperature are measured. Then the “fitting” al-
gorithm for a number of measurements n > 3 can be reduced to
finding the R, (or G,,) for which the measured values of noise
temperature 7,7 for source resistances R, (or conductances G;,)
give the best fit to the straight line. For any assumed value of
R, the coefficients ¢ and b of (8) can be found by linear
regression, fitting the measured data with the mean square error

of .
-/ Z (17 -15)°
i=1 '

where # is the number of measurement, 7,7 and T, are mea-
sured and computed noise temperatures for given values of

(10)
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Fig. 2. (a) Construction of input mmpedance transforming network (b)
Equivalent circut at frequency at which the transformer is precisely quarter-
wave.

source resistance R,,. Clearly, the best estimation of R, (and,
therefore, N and T,;) for a given set of measurement is for error
E assuming its minimum value.

IIL

Simplicity and the relative advantages of the proposed proce-
dure are demonstrated in the example of the noise measurement
at cryogenic temperatures of experimental HEMT’s developed at
Cornell University [11]. The construction of the input impedance
transforming network is shown schematically in Fig. 2(a) [12],
[13]. The quarter-wave transformers are realized as movable slugs
on a 50-Q transmission line. The transistor gate lead, covered
with teflon tubing placed inside the inner conductor of the 50-Q
line, forms a series stub of a reactance varying much more rapidly
with frequency than the real part of source impedance or the
noise parameters of a transistor. This assures that the minimum
of measured noise temperature versus frequency occurs at a
frequency at which X, =X, . The position of the transformer
can then be easily adjusted so the minimum of noise temperature
versus frequency coincides with the intended frequency of mea-
surement at which the transformer is precisely quarter-wave.

In this case, the equivalent circuit shown in Fig. 2(b) is valid
and at plane 77: Xzg = Xp,, = 0. If the graphical representation
of noise parameters [14] at plane 7} is employed, the centers of
the constant noise temperature (noise figure) circles lie on the
real axis. Measuring 7, for number of transformers of different
characteristic impedance positioned in the same plane yields the
remaining noise parameters Tyn, Nry Rygp-

Any clement of the equivalent circuit of the impedance trans-
forming network that is not precisely known but is the same for
all transformers can be treated as part of the two-port {4, ], and
therefore does not contribute any systematic errors to the de-
termination of noise parameters at plane 7.

" Determination of the noise parameters at plane T is most
simply done by using the relation

[C]=[AErl{[CT]_[CE]}[AE]_” (11)

where the chain matrix [A;] and correlation matrix [Cy] are of
the passive, reciprocal two-port between plancs T and T as
indicated in Fig. 2. Equation (11) follows immediately from (3)
rewritten for the circuit of Fig. 2. Of course, if this two-port is
lossless, [Cr] = 0. In the presence of losses, [Cz] can be easily
determined from [A;] [15]. Formulas (3) and (11), as well as
those for other interconnections of two-ports, and also conver-
sions between different sets of noise parameters, lend themselves
to computer implementation [16], [17].

MEASUREMENT EXAMPLE
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Fig. 3. Example of measured data (crosses) at 8.4-GHz frequency, corrected

for receiver contribution, for cryogenically cooled (12.5 K) Cornell HEMT at
reference plane 7, compared with minimum mean-square error E fit (solid
line) resulting in noise parameters Trmin, Ryope> G-
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Fig. 4. Analysis of error in determination of noise parameters for the experi-
mental data of Fig, 3. “Allowed” and “forbidden” regions for the set of noise
parameters Ty, Nr, Gp,, are indicated.
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Fig. 5.
Fig. 3 altered in the following way: T,,;(1.7) =15.3 K, 7,;(50) = 32.3 K. These
alterations caused the minimum of E to occur in the “forbidden” region. The
noise parameters for E assuming its minimum value do not satisfy the
fundamental inequality (6).

An example of measured data for a cryogenically-cooled Cornell
HEMT [11], [12], and its noise parameters determined at plane 7
by the described procedure and corrected for the receiver contri-
butions are given in Fig. 3 (details of the measurement setup are
given in [13]). The error analysis of this data is presented in
Fig. 4.

The “allowed” and “forbidden™ regions for noise parameters
are indicated. It is clear that relatively small measurement errors
may force the minimum of error function E into the “forbidden”
region. It is demonstrated in Fig. 5, where first and last measure-
ment results were altered to show how a minimum of E may
occur in the “forbidden” region. This example demonstrates how
easily, for a given set of measurements, the measurement error
may lead to violations of fundamental inequality (6).

Analysis of error in determination of noise parameters for the data of
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This is especially the case for very low-noise HEMT’s or FET’s
in which the equivalent noise sources in drain and gate circuits
are very closely correlated. If, therefore, in the course of measure-
ment, only two from the noise parameters 7, N, R, can be
dealt with accurately, then the inequality (6) provides a bound on
the remaining parameter.

The accuracy with which the noise parameters at plane T can
be determined from those at plan 7, is only dependent on the
accuracy with which the signal parameters of two-port 7 — T,
given for instance by [A4.], are known. In most practical situa-
tions, this network can be considered lossless, which preserves the
values of T, and N. This, therefore, may cause the errors only

min
in the values of R, and X,,.

IV. CONCLUSIONS

The novel measurement procedure of the noise parameters of
microwave two-ports has been presented. Not only are the com-
putations simplified but, at different steps of the proposed proce-
dure, the effect of measurement errors on the values of different
noise parameters can be easily analyzed.
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